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We all learn from examples. By seeing a picture of giraffes
and recognizing their invariant properties, a child constructs
a general concept of a giraffe and, in such, is able to distin-
guish a giraffe from, for example, a unicorn. Further, by
looking at a giraffe drawn by a child, we notice what criti-
cal features of this creature have been identified and what
may have been omitted.  

We acknowledge two important roles that examples play
in mathematics education. One is of interest to teachers and
designers of instructional materials, while the other is of
interest to researchers. Whereas the pedagogical aspect has
been broadly discussed (e.g., Watson and Mason, 2005; Zhu
and Simon, 1987; Leinhardt, 1993), our goal, in this article,
is to introduce the power of examples as a research tool that
provides a ‘window’ into a learner’s mind. 

According to Skemp (1987), a concept, for its formation,
requires a number of experiences – or examples – that have
something in common. Examples are considered to be an
integral part of teachers’ instructional explanations (Lein-
hardt, 1993). Thus, both teachers and their students have
experienced sets of examples corresponding to what they
teach and learn.

In considering learning from examples in the context of
mathematics education, the most common reference is to
“worked examples” (e.g., Zhu and Simon, 1987), that is,
explicit solutions to exercises shown by an instructor or pro-
vided in a text. These examples are supposed to demonstrate
the use of specific techniques, which are in turn to be mim-
icked or lightly modified by students in dealing with similar
exercises. In this case, examples are provided by an author-
ity (teacher or textbook) and those who learn from examples
are students. 

We highlight a different role of examples, by switching
the positions between those who provide examples and those
who learn from them. In our case, researchers are those who
learn from examples, whereas examples are generated by
research participants, who can be either students, student-
teachers or practising teachers. We suggest that from the
participants’ repertoire of examples researchers may learn
about their knowledge, both mathematical and pedagogical. 

We believe that examples generated by participants – if
solicited in a certain way – mirror their conceptions of math-
ematical objects involved in an example generation task,
their pedagogical repertoire, their difficulties and possible
inadequacies in their perceptions. However, there is a need
for explicit criteria for evaluating examples generated by

participants. We suggest such criteria that provide a lens
through which participant/learner generated examples can
be examined for the purpose of researchers’ learning.

Examples and example spaces
We build on the recent work of Watson and Mason (2005),
which provides a comprehensive treatment of the examples
used in teaching and learning mathematics. Watson and
Mason focus on learner generated examples, a teaching
strategy of asking learners to construct their own examples
of mathematical objects under given constraints. They
claim, and provide ample evidence, that learner generated
examples serve as a powerful pedagogical tool for enhanc-
ing the learning of mathematics at a variety of levels. 

Further, Watson and Mason introduce the idea of exam-
ple spaces, which are collections of examples that fulfill a
specific function. They suggest that example spaces are
influenced by individual’s experience and memory, as well
as by the specific requirements of an example generating
task. They explain that their “particular interest is in how
learners’ example spaces emerge and develop as they look
for particular examples in response to prompts” (p. 59).
They use a metaphor of a larder to explain ideas related to
example generation: like objects in a larder, some examples
are immediately accessible, others require some effort to be
reached and some may be out of reach for a particular person
or in a particular task. 

Watson and Mason (p. 76) distinguish between several
kinds of example spaces:

• situated (local), personal (individual) example
spaces, triggered by a task, cues and environment
as well as by recent experience

• personal potential example space, from which a
local space is drawn, consisting of a person’s past
experience (even though not explicitly remembered
or recalled), which may not be structured in ways
that afford easy access

• conventional example space, as generally under-
stood by mathematicians and as displayed in
textbooks, into which the teacher hopes to induct
his or her students

• a collective and situated example space, local to a
classroom or other group at a particular time, that
acts as a local conventional space.
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We elaborate upon these distinctions in developing a frame-
work to allow the making of inferences about one’s
knowledge by analyzing participants’ example spaces and
comparing the personal and the conventional example
spaces. However, to provide a context for such a framework,
we first consider several examples of example generation. 

Odd numbers 
The following excerpt presents a student’s (all participants’
names are pseudonyms) attempts to give an example of a
number that leaves a remainder of 1 in division by 2. The
interviewee is a pre-service elementary school teacher. The
interview was conducted as part of ongoing research into pre-
service elementary teachers’ understanding of elementary
number theory. The task presented to the participant was not
designed to investigate her understanding of division with
remainders or even and odd numbers. It was intended to be
a ‘warm-up’ task that was supposed to put the interviewee at
ease by exploring familiar territory (Ginsburg, 1997).

1. Interviewer: Can you please think of a 5-digit
number that leaves a remainder 1,
when divided by 2?

2. Cindy: [Pause] I’m thinking it would prob-
ably have to be an odd number,
because all even numbers would be
evenly divisible by 2 . . .

3. Interviewer: OK . . .

4. Cindy: And, [(pause], I’m trying to think of
what number to put on the ends, but
I’ll have 1 [pause], I don’t, actually
maybe it’s not possible, I don’t
know . . .

5. Interviewer: What is not possible?

6. Cindy: To have a remainder of 1, but . . .

7. Interviewer: You said a moment ago something
about even and odd . . .

8. Cindy: It couldn’t be an even number . . .

9. Interviewer: It cannot be an even number, so it
must be an odd number . . .

10. Cindy: Um hm . . .

11. Interviewer: So when you know that it must be an
odd number, what do you think
about now?

12. Cindy: Well I think of the prime, actually
not prime, but, [pause] I don’t know,
I’m probably stumped. Uh, [pause] I
guess maybe just look at simpler
cases, just look at 3 and 5 and 7
and . . .

13. Interviewer: 3, 5 and 7, OK, there are simpler
cases when you look at them . . .

14. Cindy: [pause] 2 is in the 3 once, remain-
der 1 . . .

15. Interviewer: [pause] Okay, so you have written
the number which is 10,003. You
divided by 2, and this is your
answer: 5001, remainder 1. Oh, it
was hard, was it?

16. Cindy: [laugh] [pause]

17. Interviewer: Can you give me another number
with 5 digits, that when divided by
2 has a remainder 1?

18. Cindy: I’ll have to play around with those
numbers. I’d keep 3 on the end . . .

In contribution 2, Cindy demonstrates a clear connection
between the remainder of 1 in division by 2 and odd num-
bers. This connection is established by elimination, that is,
“even numbers would be evenly divisible by 2”, and, as
such, it is implied that even numbers leave no remainder,
reducing the possible examples to odd numbers. This view is
also repeated in contribution 8. In contribution 4, Cindy
refers to the last digit of a number, mentioning “what number
to put on the ends”. She is likely to be distinguishing
between even and odd numbers based on their last digit. In
contribution 12, Cindy mentions “prime”, probably having
a momentary confusion between prime and odd. Being
“stumped”, Cindy employs a powerful problem solving strat-
egy – consideration of simpler but similar cases – attending
to numbers 3, 5 and 7. In contribution 14, she explicitly ver-
ifies that her example of 3 satisfies the requirement of a
number having a remainder of 1 in division by 2. Having
verified for 3, Cindy checks the number 10,003. In contri-
bution 15, the interviewer explains what Cindy has done and
after a short pause asks for another example in contribution
17. Cindy’s reply (contribution 18), “I’ll have to play
around”, is a clear indication of her intention to generate
such examples by trial and error. Having faced success with
using 3 as the last digit, she intends to keep this strategy. 

In this excerpt, the limited pool of examples and lack of flu-
ency in the way they are generated provides a reasonable
illustration of Cindy’s conceptual structure: she understands
the implication, if a number leaves a remainder of 1 in divi-
sion by 2 then it is an odd number. However, the inverse
implication, every odd number satisfies the requested condi-
tion, is missing. Consequently, she experiences difficulty in
exemplifying the general observation with a specific example. 

We are not claiming that Cindy’s approach exemplifies a
popular misconception. Our only claim is that a specific
example generation task serves as a tool for researchers to
describe Cindy’s understanding of the underlying concepts.
The issue of accessibility and correctness of specific exam-
ples is acknowledged in the framework we propose. 

Arithmetic sequence
A study of Zazkis and Liljedahl (2002) focused on pre-
service teachers’ understanding of the additive and multi-
plicative structure of arithmetic sequences. Starting with a
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straightforward and comfortable task, participants were
asked at the beginning of a clinical interview to provide sev-
eral examples of arithmetic sequences. With the exception of
the sequence of odd numbers, all the examples generated
by the participants were sequences of multiples with a con-
stant difference (e.g., 3, 6, 9, 12, … or 10, 20, 30, …). A
request for ‘something different’ resulted either in increasing
the numbers for the constant difference or in an example
for a decreasing sequence. Although all the participants rec-
ognized the sequence 2, 5, 8, …, as arithmetic, sequences
of so called ‘non-multiples’ were not in their personal
evoked example space. Consequently, an example-genera-
tion task, chosen as an easy ‘warm up’ for an interview,
provided a fruitful direction for the analysis of the data. In
the analysis, major differences were found in participants’
responses related to sequences of multiples versus sequences
of non-multiples, with a greater success and more confi-
dence displayed in tasks related to the former. 

Irrational numbers
In this study, we look at several sets of examples of irrational
numbers. In the last case, there was a specific request to give
an example of an irrational number between 100 and 200.
In other cases, the interval from which examples were to be
drawn was not specified. 

The following excerpt is from the interview with Lisa, a
pre-service elementary school teacher:

1. Interviewer: Would you please give an example
of irrational number?

2. Lisa: !

3. Interviewer: Could you please give another
example?

4. Lisa: "2

5. Interviewer: Could you please give another
example?

6. Lisa: [pause] Not from the top of my
head.

7. Interviewer: So, are there other irrational num-
bers, other than ! and "2?

8. Lisa: Maybe if we add ! and "2 we will
get another irrational number.

9. Interviewer: I see, and what about "2 × !?

10. Lisa: I’m not sure.

11. Interviewer: And how about "17?

12. Lisa: Maybe, not sure.

In what follows, we present only the lists of participants’
responses. We note that these examples were provided fol-
lowing a repeated request for ‘another’ one and also for
“something different”. According to Watson and Mason
(2005), request for another, and then another example,
encourages people first to tinker with their first example

and then to search in a different direction. 
Responses of Bob, a pre-service elementary school

teacher:
• 0.12112211122211112222 …

• 5.4544554445554444555544444 …

• Whatever, there are many of these …

• Maybe 2.124576435789… not repeating.

Responses of Tanya, a high school mathematics teacher:
• "2

• !

• "3

• "7

• square root of any prime number

• 0.12396764 … not repeating decimal 

• any non-repeating decimal.

Responses of Paul, a mathematician:
• 100 + "2  

• 100 + "17  

• 200 – "2  

• "10,001

• "1,000,001

• 300 – "1,000,001

• 80 "2

It is clear from the interview excerpt above that Lisa’s per-
sonal example space of irrational numbers is limited to ! and
"2. She also suggests, hesitatingly, that the sum of these irra-
tional numbers will give an irrational result. However, she is
not sure about what the product is. Furthermore, she cannot
decide whether "17 is an irrational number. 

From the examples generated by Bob it is safe to conclude
that his view of irrational numbers is guided by his prevalent
positive disposition towards decimals. In fact, he is aware
of two different types of decimal representations: while the
mathematical requirement is for no repetition in digits, Bob
specifies that lack of repetition is assured either by present-
ing a pattern which is a ‘growing’ pattern, rather than
repeating, or by a ‘random’ sequence of digits. 

It is interesting to note that the first two examples given
by Tanya, ! and "2, are identical to the examples of Lisa.
However, Tanya is definitely able to extend these examples
and suggest that the “square root of any prime number” and
“any non-repeating decimal” exemplify an irrational num-
ber. These general rubrics demonstrate her conceptual
clustering of the rich pool of examples. 

Paul’s task was harder, as the requested examples did not
only have to be irrational, but also fall in a given interval.
His method of creating these irrational numbers exempli-
fies that he starts with familiar irrationals and then adjusts
them using arithmetic operations to fit the required interval.
He also mentions cubic roots, but does not mention decimal

3

3
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representations or !. Even before the request for “something
different”, Paul has a rich variety in his examples as he
attempts to step away from the ‘obvious’ rubrics (exemplified
by Tanya). These observations of richness and generality are
acknowledged in the framework we propose. 

Multiple solution problems
Can you give an example of a problem that can be solved in
different ways? This question was posed to a group of prac-
tising high-school mathematics teachers in an individual
interview setting. We examine several of their responses.
(Interview excerpts are translated from Hebrew by the
authors.)

1. Interviewer: Can you give an example of a prob-
lem that can be solved in different
ways?

2. Boris: No, nothing comes to my mind at
this moment. 

3. Interviewer: Think a little.

4. Boris: All that I can think about … We [in
the class] talked a lot about … Let’s
say, [we need] to prove that any tri-
angle is an isosceles triangle. Then it
took a lot of time to think what was
the mistake [in the proof]. And there
were several ways to think about it
… One student said: “I want to draw
the figure precisely”. This was
something unconventional. 

[5-10: Skipped – conversation about
the student.]

11. Interviewer: Can you think about additional
examples?

12. Boris: Well. In geometry you have a lot of
examples. First of all we teach not to
be locked on a particular tool. So
that geometry and trigonometry will
not be separated [fields]. [You can]
look at a problem from different
points of view … You can arrive at
any result in different ways …

13. Interviewer: Can you think about different kinds
of multiple solution problems?

14. Boris: Different kinds? Tools?

15. Interviewer: You said you solved problems in
different ways. How can you distin-
guish between the different ways?

16. Boris: I still do not understand your ques-
tion.

17. Interviewer: You talked about different solutions
for geometry problems and about

solving a problem with geometry
and trigonometry [tools]. Can you
elaborate on this a little?

18. Boris: Look, for example, at proofs of the
reduced multiplication formula
[direct translation from Hebrew –
formulas like (a + b)2 = a2 + 2ab + b2]
in geometric ways. You can draw a
square, divide it in parts and then
combine the parts differently. Let’s
say this is an option. But you also
can open the parentheses and add
similar addends. This is what stu-
dents know. So you can make the
lesson more colorful.

Typically (of the teachers), Boris’s immediate reaction (con-
tribution 2) was “Nothing comes to my mind”. Most of the
teachers provided similar answers at the beginning of the
interview:

Sarit: I don’t know, I don’t have an exam-
ple now. But I remember that I did
this a few times. I don’t have an
exact example.

However, as the interview developed, all the teachers
recalled different mathematics topics having problems that
could be solved in different ways. Most of the teachers (like
Boris in contribution 12) mentioned geometry and con-
nected geometry with trigonometry.

Ronit: This happens in the plane geometry.
This week, for example, I solved a
problem in a certain way. Since I
teach trigonometry in this class as
well occasionally, two lessons ago I
taught the area of the triangle using
trigonometry. I told them [the stu-
dents], “I can show you how to
solve the same problem using trigo-
nometry”. The same problem in
plane geometry can be solved using
trigonometry.

For geometry problems, most of the teachers like Boris (con-
tribution 12: “In geometry you have a lot of examples”) just
mentioned the subject and did not provide an example of a
specific mathematical problem that could be solved in dif-
ferent ways. An exception may be seen in the example that
referred to Pythagoras’s Theorem and several of its proofs.
In other cases, similar to Boris’s, instead of providing an
example of a specific problem, the participants mentioned
curriculum areas in which such examples can be found and
the ways in which the tasks can be solved. For example,
Boris (contribution 18) mentioned proving reduced  multi-
plication formulas by algebraic manipulations and by using
areas. However, he neither specified the formulas nor pre-
sented the proofs. 

Similarly, several teachers mentioned the possibility of
solving quadratic equations in different ways, i.e., factoring
a polynomial, completing the square or quadratic formula.
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For example, Sohir talked about investigating a function,
with and without the use of the second derivative:

Sohir: For example, in function investiga-
tion …, there are several methods.
The second derivative helps to
decide whether we have a minimal
or maximal point, and accordingly
we can decide when the function
increases or decreases. Or we may
use the first derivative and the snake
[interval] method to find domains in
which the function either increases
or decreases.

We suggest that the examples (more precisely, topics) men-
tioned by the teachers in our interviews were situated in their
classroom practice. The excerpts from the interviews with
Boris (contrbution 12: “we teach not to be locked”;  contri-
bution 18: “this is what students know”) and Ronit (“Since
I teach trigonometry in this class”) demonstrate that when
triggered to think about mathematical examples of multiple
solution problems the teachers move into pedagogical terri-
tory, search for examples in their classrooms and think about
the ways of teaching. Not surprisingly, the teachers at junior-
high school mentioned topics from their curriculum, and
those at senior high school drew on the topics that they
taught.

We expected that the teachers would provide a richer vari-
ety of multiple solution problems, however, the examples
suggested by teachers were bounded by their teaching prac-
tices. We differentiate two types of examples according to
their sources (Leikin and Levav-Waynberg [1])

• craft-pedagogical, examples of the first type
related to teachers’ pedagogical experience and the
mathematics that they themselves learn when
teaching – teachers often noted that examples of
problems that can be solved in different ways were
not constructed or chosen a priori, but emerged
during mathematics lessons in which different
solutions were suggested by the students

• curricular, examples of the second type, are asso-
ciated with topics from the school mathematics
curriculum that include different specific solutions
for the same problem – among these are solving
systems of linear equations (using substitution or
linear combination); solving quadratic equations
(by factorising, by quadratic formula, by complet-
ing the square); investigating functions (with or
without second derivative (Sohir).

During our interviews, despite a request for an example of
a problem, most teachers provided examples of curriculum
topics rather than a specific problem that could be solved in
different ways. Apparently, such problems were not part of
the teachers’ active repertoire of examples. The existence
of such problems was acknowledged, but the teachers did
not remember and could not readily reproduce specific
examples during the interview. These observations of gener-
ality, richness and accessibility are acknowledged in our
proposed framework. 

Towards the framework
Our working assumption is that example generating tasks
may serve as a research tool in studies that aim to describe
and analyze participants’ knowledge. We have provided
some support for this assumption by examining several
cases of example generation. However, in order to be imple-
mented widely as a research tool, a framework for analyzing
qualities and structures of example spaces of participant
generated examples needs to be designed.  

We recognize Watson and Mason’s observation that
“exemplification is individual and situational” (p. 50). ‘Indi-
vidual’ being understood as dependent on the knowledge
and experience of the learner and ‘situational’ meaning,
framed by the prompt and circumstances in which such
knowledge is presented. In order to make inferences about
participants’ knowledge from the examples they generate,
we must control the situation, that is, the ways in which they
are invited to provide examples. It is the underlying assump-
tion of our framework that participants have ample opportunity
to provide or construct examples, and that multiple exam-
ples are encouraged by asking for ‘another and another’ and
for ‘something different’. 

The two kinds of example generation tasks – that of math-
ematical objects and of mathematical problems – may
appear very different in their purpose and structure. The dif-
ferences depend not only on the nature or complexity of the
task itself, but also on the participants who respond to the
task. Depending on the individuals, students or teachers, par-
ticipant-generated examples may allow us to analyze
mathematical or pedagogical knowledge. While students’
examples reflect their mathematical knowledge, teachers’
examples show both their mathematical and pedagogical
knowledge. For practising teachers these two kinds of
knowledge are intertwined, situated in their practice (Leikin
and Levav-Waynberg [1]). Nevertheless, it is our view that
similar characteristics of examples surface in responses to
both tasks. These include, but are not limited to, the follow-
ing components (previously signposted in the examples):
correctness and accessibility, richness, and generality.

A description of an individual’s knowledge or certain
understandings is based, at times informally and implicitly,
upon comparison with understanding possessed by an
‘expert’ – a mathematician or a teacher. As such, the sug-
gested framework will provide tools for comparing personal
(evoked) example spaces, as triggered by an example-
generation assignment, with conventional example spaces,
as generally understood by mathematicians. We suggest that
when contextualizing individual activity in the community
of practice, collective example spaces may shed light on the
qualities of personal example spaces as connected to the pro-
fessional or learning experiences of the participants. 

Accessibility and correctness 
Were the examples correct, that is, have they satisfied the
conditions of the task? Were the examples generated with
ease or with struggle? Were they ‘pulled out of a sleeve’,
constructed using specific procedures, or selected from
resources? Were there any procedures used for constructing
examples or for checking that the conditions of the task were
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satisfied? Were the procedures used for example generation
mathematically correct, elegant, or unnecessary? 

For example, a procedure for generating a number that
leaves a remainder of 1 in division by 2 by multiplying some
number by 2 and adding 1 is mathematically correct but is
absolutely unnecessary if understanding of parity is
involved. Further, focusing on the excerpt with Cindy above,
division with remainder is unnecessary to determine the
remainder in division by 2 of an odd number. Carrying out
this procedure shows that in Cindy’s web of knowledge
those two features of a number – oddness and remainder of
1 in division by 2 – are not connected.

Giving an example of a multiple solution task appeared
to be rather complicated for the teachers and in most cases
they could not formulate such a task promptly. The inter-
viewer had to trigger teachers’ reasoning with series of
questions to help them in generating their examples. We did
not observe clear procedures for constructing multiple solu-
tion tasks (e.g., problem posing procedures). Additionally, in
many cases, correctness of the examples could not be
addressed due to their lack of concreteness. Since exempli-
fication is situational, it can be the case that the teachers
assumed that the interviewer was familiar with problems
from the curricular topics they mentioned (Leikin and
Levav-Waynberg [1]). However, we believe that in many
cases lack of concreteness of the tasks provided by the
teachers reflected the lack of their accessibility to the multi-
ple solution tasks.

Richness
Did the examples vary in kind? Was there a fluency in any
variety? Were examples routine or non-routine? How does
the personal example space of a participant relate to con-
ventional example space? How is the personal example
space similar to/different from the collective example space?
Were the examples situated in a particular context, such as
curriculum or classroom experience?

Richness of an example space can be seen as an indicator
of a particular concept image. In the case of irrational num-
bers, we see that Lisa’s example space is rather ‘poor’, it
includes only two elements, ! and "2. In fact, other
instances of example spaces limited to these two numbers
were observed in prior research (Sirotic and Zazkis, 2007).
For Tanya, ! and "2 are also the first examples that come to
mind, but her further examples point to a relative richness –
they include additional square roots and also decimal repre-
sentations. However, her examples, as well as the way in
which she describes them, suggest that her knowledge is
strongly situated in a school curriculum.

Paul’s case is an illustration of how the richness of exam-
ple spaces is triggered by the task. Without limits on the
interval, his irrationals may not have been presented as sums
or products. His image of irrationals is connected to roots
and operations and does not rely, at least initially, on decimal
expansion.  

Richness of an example space may also hint at a learner’s
disposition. It is clear from Bob’s examples that he focuses
exclusively on the decimal representation of irrational num-
bers. Such a disposition towards decimals is limiting in

decision making about irrationality of numbers and leads to
potential errors (Zazkis and Sirotic, 2004). Another illustra-
tion of students’ dispositions emerging from their examples
is evident in the examples of arithmetic sequences described
above. This disposition towards multiples appeared trou-
blesome when participants were engaged in tasks – such as
identifying whether a given element belongs to a given
sequence – that concerned sequences of non-multiples
(Zazkis and Liljedahl, 2002). 

Teachers’ responses to “give an example of a multiple
solution task” provide a different perspective on the richness
of the examples. When talking about the problem richness
we address both the problem itself and its solutions. Simi-
larly to Tanya’s example space of irrational numbers
analyzed above, both personal and the collective example
spaces of multiple solution tasks were situated in the school
curriculum. Moreover, the interviews revealed that teachers’
knowledge is situated in their classroom practices. Mostly
the tasks with solutions suggested by the teachers were rou-
tine. Examples provided by Boris – the teacher with the
strongest mathematical background among the interviewees
– demonstrate richness that is not typical for this group of
participants. His examples include a non-routine problem
of finding a mistake in an incorrect proof of a mathematical
statement (“any triangle is isosceles”) and a non-routine
geometric approach to routine formulas of reduced multi-
plication. Thus, we suggest that richness of example spaces
is strongly dependent on the participants’ educational back-
ground. Whereas the majority of teachers’ examples of
multiple solution tasks are situated in the prescribed curric-
ular and craft (practice) sources, non-routine tasks are
usually borrowed from systematic sources of knowledge (for
the distinction between craft, systematic and prescriptive
teachers’ knowledge, see Kennedy, 2002). 

Generality 
Were the examples specific or general? 

Watson and Mason (2005) note that an example genera-
tion task “may bring to mind a single example, or a class of
examples or a ‘flavour’ of possible examples” (p. 50). A
‘flavour’ is interpreted as an essence or a format that needs
filling out. 

Perception of generality is individual. While for one per-
son "17 is a specific example, possibly a variation on the
‘classical’ example of "2, for another it may serve as a rep-
resentative of a class of ‘roots of primes’ or ‘square roots of
numbers that are not perfect squares’, even if the class is
not described explicitly. 

In the usual context of mathematics education, ‘general’
appears to be more valuable than ‘specific’. Usually, we
strive for “seeing the general in the particular” (Mason and
Pimm, 1984) and appreciate generalized or generalizable
solutions. However, a word of caution. While some general
examples, characterizing classes of objects, may be seen as
an indication of mathematical understanding, other general
examples may point to deficiencies in understanding. In
other words, the ‘generality’ may serve as a generator, but
may also serve as a protective shield. For example, the claim
that a square root of any prime exemplifies an irrational
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number is a format – or, in Watson and Mason’s terms, a
‘flavour’ – for generating (an infinite number of) examples.
However, Cindy’s claim above, that a number that leaves a
remainder of 1 in division by 2 is an odd number does not
serve for her as a generator of examples. Without further
probing, this gives an illusion of understanding, when, in
fact, there is an inability to come up with a specific example.
As such, we consider not only the “flavour of possible exam-
ples”, but also individual’s ability to work with this flavour. 

Paraphrasing Mason and Pimm (1984), notwithstanding
the general, we are interested in participants’ ability of “fill-
ing the general with the particular”. Additional illustration
for the unfilled ‘example flavour’ is in the lack of concrete-
ness in the examples of the multiple solution tasks provided
by teachers. This is in contrast to the anticipated example
that could include a precise formulation of a problem and
its different solutions. 

Conclusion
We adopt the view that “to understand mathematics means,
among other things, to be familiar with conventional example
spaces” (Watson and Mason, 2005, p. 64). From this position,
we believe that learners’ example spaces, and their relation-
ship to the conventional ones, provide a window into their
understanding of mathematics. We considered two kinds of
example spaces generated by participants: examples of math-
ematical concepts and examples of mathematical tasks. By
analyzing revealing features of these examples we suggested
a possible lens through which learners’ example spaces can
be viewed in order to examine the learners’ knowledge and
understanding. The suggested framework is a guideline, it is
neither comprehensive nor complete; some of the compo-
nents are not applicable for some example generation tasks

and example spaces while some possible characteristics of
example spaces are not featured in the framework. Never-
theless, we consider it to be a compelling starting point for
further development and successive refinement.

Notes
[1] Leikin, R. and Levav-Waynberg, A. (in press) ‘Exploring mathematics

teacher knowledge to explain the gap between theory-based recommen-
dations and school practice in the use of connecting tasks’, Educational
Studies in Mathematics.
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